CCNet DEBATES, 6 August 1998


From James D Perry <>

Dear Professor Peiser,

Attached you will find "Planetary Defense: The Legality of Global
Survival," by Lt Col John C. Kunich, USAF.  The online version may
be found at  (The
attached version does not have footnotes, but a footnoted version
may be downloaded from the above site.)


James D. Perry


Note: Due to the length of Lieutenant Colonel Kunich's outstanding
paper, I have posted his paper in two parts. Comments, suggestions
or critiques regarding his exposition and the various topics
discussed therein are very welcome.

Benny J Peiser



By Lieutenant Colonel John C. Kunich, USAF

Lieutenant Colonel Kunich (B.S. and M.S., University of Illinois at
Chicago, J.D., Harvard Law School, LL.M., George Washington University
School of Law) is the Chief of the Compliance and Planning Branch, Air
Force Environmental Law and Litigation Division. He is a member of the
Illinois State Bar.

I. Introduction.

If you were standing on Kosrae Island off the New Guinea coast on
February 1, 1994, you would have seen a blast in the sky as bright as
the Sun. This was caused by a small meteor entering Earth's atmosphere
at 15 kilometers per second (roughly 33,500 miles per hour).
Fortunately for you and everyone else nearby, the meteor exploded at
high altitude, over a sparsely populated region; the blast had the
force of 11 kilotons of TNT.

This was not your first near-death experience. On March 23, 1989, an
asteroid about 800 meters in diameter narrowly missed the Earth (by
about 6 hours'difference in relative position). If this asteroid had
struck the Earth, the impact would have released energy equivalent to
about 40,000 megatons of TNT, or 2,000 standard-size hydrogen bombs. On
an even larger scale, on December 8, 1992, a large asteroid named
Toutatis missed hitting this planet by only two lunar distances.

This was a very lucky day for everyone on Earth, because Toutatis is
nearly 4 kilometers in diameter. If it had hit us, the force of the
collision would have generated more energy than all the nuclear weapons
in existence combined--approximately 9 million megatons of TNT.

Is there anything that can be done about these monumental hazards,
other than worry? Recently, there has been some movement to take
positive steps to protect the Earth. Planetary defense is the shorthand
term for an interrelated cluster of missions devoted to the detection,
tracking, and generation of possible responses to an external threat to
this planet, similar to or much greater than the ones just described.
Such threats include asteroids, comets, and meteors that may collide
with or otherwise affect the Earth.

The purpose of this article is to evaluate the legality of planetary
defense, including related legal issues. We will trace the nature and
magnitude of external threats to Earth, briefly discuss possible means
of accomplishing the mission of planetary defense, and then examine in
detail the attendant legal ramifications.

II. The Threat.

The prospect of large exogenous objects crashing into Earth is, quite
unfortunately, not the stuff of science fiction. As hinted at by the
near-misses previously described, it has happened many times during our
planet's known history, and there is every reason to believe that it
will happen again. It is important to examine the evidence in support
of this in some detail so as to establish the very real, very serious
threat that planetary defense is meant to address.

Clear scientific evidence currently exists of approximately 140
"hypervelocity impact craters" on Earth, and this number is increasing
by about 3 to 5 new craters each year. As indicated in Table I, these
craters are found in virtually every part of the globe, with many
located within areas in the United States and Western Europe that are
now heavily populated. It is reasonable to presume that a large number
of impacts remain undiscovered, because these impacts would have
occurred in oceans and seas or in relatively inaccessible terrestrial
areas such as Siberia or the interior of Greenland or Alaska. Given
that a great preponderance of the Earth's surface is covered by water,
there is no reason to believe that these regions have received any less
than their proportionate share of impacts. In many cases of an ocean
strike from space, the only evidence we would be likely to have would
be an otherwise unexplained tsunami or tidal wave.

For most of the known impact craters, we can only estimate the nature
of the collision from what remains of the crater after erosion, human
activity, and other factors have taken their toll. The size of these
impact craters ranges up to 200 kilometers in diameter or more; it is
likely that many of these were once much larger. Moreover, some
extremely destructive incidents may not have involved actual contact
with the Earth; a space object may explode in the atmosphere prior to
"landing," with nonetheless devastating effects on the planet from the
shockwave and collateral phenomena.

It is difficult to estimate with much confidence the frequency with
which Earth has been struck. The problem is partially due to the
probability of many impacts occurring in water and remote land regions,
or prematurely terminating in mid-air explosion. Also, the obscuring
effects of erosion and other processes may render many smaller craters
unrecognizable over time. There is an ongoing debate within the
scientific community on several key points: (1) the rate at which this
planet has been hit; (2) whether that rate has increased in more recent
times; and (3) whether there have been periods of greatly intensified
impact activity.

Irrespective of the ultimate resolution of these controversies, it is
beyond dispute that planet Earth has experienced hundreds of collisions
with large objects from space. Moreover, there is no reason to presume
that these events are forever relegated exclusively to the distant
past. Comparatively small-scale, yet still phenomenally destructive
strikes have occurred quite recently.

For example, on June 8, 1908, a pale blue fireball appeared in the
Siberian sky, moving rapidly northward. Then the object exploded about
6 kilometers above the forest, creating a column of flame and smoke
more than 20 kilometers high.  Although no crater was formed, the blast
caused the destruction of more than 2,000 square kilometers of Siberian
forest in the Tunguska region. This immense area was flattened and
burned by the superheated air and the shock wave that literally was
felt around the world. It is believed that the source of this
devastation was a stony asteroid about 80 meters in diameter, hurtling
toward Earth at Mach 45. When it entered the atmosphere at this
incredible velocity, it created a shock wave in front of it, which in
turn resulted in a pressure gradient that eventually blew the asteroid
apart. With this recent, relatively minor incident in mind, let us
explore the probable consequences of more major collisions.

Currently, astronomers estimate that at least 200 asteroids are in
orbits that cross the Earth's orbit, and the number of such known
asteroids is rapidly increasing as detection methods improve. Most of
these asteroids are larger than 500 meters in diameter (several times
larger than the Tunguska asteroid) and would cause massive damage if
they were to collide with this planet. In addition, long-period comets,
although less numerous than asteroids, pose a significant threat due to
their greater velocities relative to Earth.

The history of life on Earth includes several devastating periods of
mass extinction during which the vast majority of species then in
existence became extinct within a relatively short span of time. The
best known of these mass extinctions found the dinosaurs tumbling all
the way from their throne as the rulers of all living things to the
bone pile of archeological history. No less significant, however, were
the extinction spasms that wiped out approximately 70 and 90 percent of
marine species, respectively. Even the species that survived often
experienced catastrophic reductions in their populations.

Several scientific studies have linked mass extinctions to collisions
between Earth and large objects from space. The hypothesis that these
extinction spasms were caused by these collisions and their aftermaths
is supported (1) by the discovery of the now well-documented large
impact event at the [Cretaceous/Tertiary] boundary; (2) by calculations
relating to the catastrophic nature of the environmental effects in the
aftermath of large impacts; (3) by the discovery of several additional
layers of impact debris or possible impact material at, or close to,
geologic boundary/extinction events; (4) by evidence that a number of
extinctions were abrupt and perhaps catastrophic; and (5) by the
accumulation of data on impact craters and astronomical data on comets
and asteroids that provide estimates of collision rates of such large
bodies with the Earth on long time scales.

There are at least six mass extinctions that have been linked with
large impacts on Earth from space. How and why did these impacts have
such a profoundly devastating effect on such a vast spectrum of living

Some scientists maintain that the greatest natural disasters on Earth
have been caused by impacts of large asteroids and comets. Although
rare compared to "ordinary" floods and earthquakes, these impacts are
infinitely more dangerous to life. There are several reasons for this.

Initially, of course, a giant object hitting the Earth at spectacular,
hypersonic velocity would utterly destroy the local area around the
impact. An explosive release of kinetic energy as the object
disintegrates in the atmosphere and then strikes the Earth generates a
powerful blast wave. The local atmosphere can be literally blown away.
If the impact falls on ocean territory, it may create a massive tidal
wave or tsunami, with far-reaching effects.

When tsunamis strike land, their immense speed decreases, but their
height increases. It has been suggested that tsunamis may be the most
devastating form of damage produced by relatively small asteroids,
i.e., those with diameters between 200 meters and 1 kilometer. "An
impact anywhere in the Atlantic Ocean by an asteroid more than 400
meters in diameter would devastate the coasts on both sides of the
ocean with tsunami wave runups of over 60 meters high."

Horrific as such phenomena are, they are dwarfed by a potentially far
greater hazard. The impact of a sufficiently large object on land may
cause a blackout scenario in which dust raised by the impact prevents
sunlight from reaching the surface [of the Earth] for several months.
Lack of sunlight terminates photosynthesis, prevents creatures from
foraging for food, and leads to precipitous temperature declines.
Obviously even much smaller impacts would have the potential to
seriously damage human civilization, perhaps irreparably.

In addition to the dust raised from the initial impact, smoke and
particulate matter from vast, uncontrollable fires may greatly
exacerbate this blackout effect. A large space object generates
tremendous heat, regardless of whether it is destroyed in the
atmosphere or physically hits the surface of the Earth. These fires can
reach far beyond the impact area, due to atmospheric phenomena
associated with the entry of a huge, ultra-high speed object.

A huge mass of dust, smoke, and soot lofted into Earth's atmosphere
could lead to effects similar to those associated with the "nuclear
winter" theory, but on a much larger, much more deadly scale. Such
effects are now widely believed to have been a major factor
contributing to the mass extinction spasms.

These cataclysmic effects may have been worsened still further by other
collateral phenomena associated with the impact. For example, acid
rain, pronounced depletion of the ozone layer, and massive injections
of water vapor into the upper atmosphere may be indirect effects, each
with its own negative consequences for life on Earth.

It is true that destructive impacts of gigantic asteroids and comets
are extremely rare and infrequent when compared with most other dangers
humans face, with the intervals between even the smallest of such
events amounting to many human generations. No one alive today,
therefore, has ever witnessed such an event, and indeed there are no
credible historical records of human casualties from impacts in the
past millennium. Consequently, it is easy to dismiss the hazard as
negligible  or to ridicule those who suggest that it be treated

On the other hand, as has been explained, when such impacts do occur,
they are capable of producing destruction and casualties on a scale
that far exceeds any other natural disasters; the results of impact by
an object the size of a small mountain exceed the imagined holocaust of
a full-scale nuclear war. Even the worst storms or floods or
earthquakes inflict only local damage, while a large enough impact
could have global consequences and place all of society at risk.
Impacts are, at once, the least likely but the most dreadful of known
natural catastrophes.

What is the most prudent course of action when one faces an extremely
rare yet enormously destructive risk? Some may be tempted to do
nothing, in essence gambling on the odds. But because the consequences
of guessing wrong may be so severe as to mean the end of virtually all
life on planet Earth, the wiser course of action would be to take
reasonable steps to confront the problem. Ultimately, rare though these
space strikes are, there is no doubt that they will happen again,
sooner or later. To do nothing is to abdicate our duty to defend the
United States, and indeed the entire world, and place our very survival
in the uncertain hands of the false god of probabilities. Thus, the
mission of planetary defense is being considered, with a substantial
role to be played by the United States Air Force.

III. Possible Methods of Planetary Defense.

A rigorous examination of the technological means of planetary defense
is beyond the scope of this article; such matters are the province of
highly sophisticated technical analysis. However, it is important to
understand at least in outline the probable instruments of
accomplishing that mission, because the legality of various options
depends in large part on the specific methods employed, e.g., nuclear
versus non-nuclear devices.

There are two general, basic aspects of planetary defense: the
surveillance of space for potential threats, and the mitigation of a
threat once it is detected. Let us briefly examine each in turn.

Obviously, the mission of planetary defense requires as a fundamental
prerequisite the surveillance of space to allow the detection of
threats, with sufficient efficiency, precision, and promptness to
enable a meaningful response. Given that the type of objects of
greatest concern (large asteroids, meteors, and comets) would approach
Earth from space at very high speeds from very great distances, the
tools of detection and tracking tend to fall into the already
established fields of astronomy and early warning/air defense.

Detection addresses the need to identify potential threats early; once
an object is detected, it is necessary to track the progress of the
threatening object, and to predict accurately the likely time and place
of impact. Additionally, it is important to characterize the object,
i.e., to estimate its composition and chemical properties so as to
prepare an appropriate response. These activities could be pursued in
part from Earth through use of sophisticated telescopes, in conjunction
with radar. However, these remote-sensing methods can only perform
preliminary, limited characterization. In order to ensure the most
comprehensive, most precise, early-warning coverage, as devoid of
blind-spots and interference as possible, it may be necessary to employ
some space-based methods. Perhaps an array of orbiting monitoring
stations, equipped with telescopes and other monitoring devices, could
provide this type of coverage. Such a space-based sentinel system would
be a highly useful if not absolutely essential complement to similar
components on Earth, because it would be free from the interference
effects associated with "looking" through Earth's atmosphere.

Evaluation of information from the sentinel system or systems would
require state-of-the-art analytical techniques. The data would be
processed to yield estimates of impact time and place and the probable
consequences. Undoubtedly, computer models would play a role in this
phase of the mission, taking into account the variables that might
affect the outcome. Ideally, the evaluation process would also provide
insight into the optimal methods and means of response to the threat.

Mitigation, or response, could take several forms, depending in part on
the nature and magnitude of a given threat, once it has been detected
and evaluated. One possible response would be evacuation of the impact
zone, to minimize loss of life. A closely related response is
preparation to minimize the resultant damage due to fires, tidal waves,
earthquakes, acid rain, and other after-effects, and to provide medical
care to the victims.

These forms of response, though important, would be grossly inadequate
when dealing with a truly massive threat such as those discussed
previously. In the event of a massive strike from space, the resultant
apocalyptic disasters would render such efforts as fruitless as
rearranging the deck chairs while the Titanic sinks. The only
meaningful response to a massive strike is some form of direct

Direct intervention may entail deflection or destruction of the
approaching space object to prevent or mitigate any impact with Earth.
The means for achieving this fall partially within the realm of
existing military capabilities, and partially within the ambit of
technologies superficially similar to some proposed/experimental
aspects of the Strategic Defense Initiative (SDI).

Depending on the physical size and other attributes of the threatening
object, a variety of countermeasures might be effective in diverting or
destroying it. Earth-based nuclear devices such as Intercontinental
Ballistic Missiles (ICBMs) or their submarine-launched counterparts
might suffice. Non-nuclear options conceivably would work, including
kinetic energy or laser systems such as were explored under SDI. Some
of these may require space-basing to be effective, while others may
work in an Earth-based mode.

A truly effective planetary defense system would probably employ
multiple, redundant layers of techniques. To compensate for the
shortcomings of any one component in any given area of the mission, the
system should have an array of methods, each relying on an independent
technological foundation. Most likely, a combination of space-based and
Earth-based components would be necessary. Taken together, the full
panoply of technologies would synergistically present more complete
detection and protection than any subset of components could provide in
isolation. This concept of defense-in-depth is warranted by the
unacceptability of a failure; we may not get a second chance to get it

With this brief overview of the possible means and methods of
conducting a planetary defense mission, let us turn our attention to
the legal issues. Depending on the specific forms of response used, the
legal ramifications would vary.

IV. Legal Issues

Because of the nature of the threat, and the need to respond in space,
the legality of planetary defense measures would fall within the area
of international law and its very new relative, space law. These
branches of law are largely creatures of treaty and other forms of
international agreement. Therefore, this section will deal in turn with
the treaties and agreements most apt to have some bearing on planetary

A. The Outer Space Treaty.

The so-called Outer Space Treaty is most directly applicable to
planetary defense as a whole, taking into account all of its probable
components. The Outer Space Treaty was signed in 1967 by the United
States and more than 100 other nations (including the Soviet Union),
under United Nations sponsorship. Basically, this Treaty seeks to
restrict military activities in space and to preserve the use of space
for peaceful purposes. Article IV is most on point for purposes of
planetary defense. It provides:

  States Parties to the Treaty undertake not to place in orbit around
  the Earth any objects carrying nuclear weapons or any other kinds of
  weapons of mass destruction, install such weapons on celestial
  bodies,  or station such weapons in outer space in any other manner.

  The moon and other celestial bodies shall be used by all States
  Parties to the Treaty exclusively for peaceful purposes. The
  establishment of military bases, installations and fortifications,
  the testing of any type of weapons and the conduct of military
  maneuvers on celestial bodies shall be forbidden. The use of military
  personnel for scientific research or for any other peaceful purposes
  shall not be prohibited. The use of any equipment or facility
  necessary for  peaceful exploration of the moon and other celestial
  bodies shall also not be prohibited.

The ambiguities in Article IV are readily apparent. Several key terms
are left undefined and subject to debate, yet are central to the
legality of planetary defense. Some of these terms can be addressed
briefly, while others require a significant amount of analysis. We
shall begin with the simpler issues and then move to the more

                           Outer Space

For example, on the most basic level, it is important to know what is
meant by "outer space." The Treaty does not define the term. However,
the "space powers" have created a rule of general international law
that satellites are considered to be in outer space, and thus national
airspace cannot extend beyond the altitude of the orbit of the lowest
satellites, which is about 100-110 kilometers above sea level. Under
this interpretation, outer space could be considered to begin at or
near this elevation, and thus any effective planetary defense system
would by necessity operate in outer space. As a threshold matter, then,
the Treaty is applicable to planetary defense. Now we must determine
whether any of its specific provisions pose a problem.

                    Weapons of Mass Destruction

Article IV's restrictions on "weapons of mass destruction" might seem
at first blush to apply to planetary defense devices. However, the
concept of "weapons of mass destruction" has typically been defined as
weapons that are intended to have indiscriminate effect upon large
populations and large geographical areas. The definition excludes
conventional artillery munitions, but includes nuclear weapons; this
rather narrow focus reflects the concerns of the era in which the
Treaty was negotiated. At that time, nations were considering placing
nuclear bombs in orbit over other nations, for release upon
commencement of hostilities. The use of the term "weapons of mass
destruction" was thus designed to preclude only this type of orbiting,
space-based nuclear offensive weapon.

The drafters' agreement that the Treaty does not prohibit the
stationing of land-based ICBMs, even though their flight trajectory
would take them through outer space, is further evidence that the
drafters only intended this paragraph to ban orbiting nuclear-type
weapons. Therefore, so long as the weapon itself is not based in space,
the fact that the weapon may travel through space when used (as with a
land-based ICBM) does not cause it to violate the Treaty. If the
opposite interpretation were correct, the Treaty would ban all
land-based ICBMs, but the Parties have never suggested that it does.

                        Peaceful Purposes

A key point and a matter of considerable ambiguity and controversy
deals with the "peaceful purposes" language in Article IV of the
Treaty. As we shall see, two theories exist as to the meaning and
effect of this seemingly simple term. The confusion stems in part from
the total absence of any language in the first paragraph of Article IV
restricting activities in outer space to "peaceful purposes."  There
are no blanket "peaceful purposes" limitations applicable to all of
outer space. However, this "peaceful purposes" language does appear in
the second paragraph, which does not refer to outer space as a whole
but rather refers only to the moon and other celestial bodies.

When the Treaty was signed, these provisions sparked much debate as to
whether some military activities were therefore permitted in outer
space. The United States' position has long been that "peaceful
purposes" does not exclude all military activities, but only bars
aggressive military uses.

           Peaceful Purposes -- the Partial Demilitarization View

Under this view, the two paragraphs of Article IV, when read together,
only mandate a partial demilitarization, in which outer space as a
whole is treated differently from the moon and other celestial bodies.
The partial demilitarization view holds that outer space is only
partially demilitarized, while the moon and other celestial bodies are
totally demilitarized. In contrast, another view, which we will discuss
in due course, is that "peaceful" means totally non-military and that
the Treaty as a whole demands this result, whether in outer space or on
celestial bodies. This second theory (the total demilitarization view)
focuses on the more general articles of the Treaty to conclude that its
overriding purpose is to ensure that outer space as a whole is used
only for peaceful purposes and for the benefit of all mankind, to the
complete exclusion of all military purposes.

The partial demilitarization, or "Western" view, maintains that "use
for peaceful purposes" should be interpreted as use for non-aggressive
purposes, and that military use of outer space is allowed so long as it
is non-aggressive. This interpretation, which seems to be more widely
held than the alternative, permits a much broader range of military
activity in outer space. Supporters of this view argue that if
"peaceful" is synonymous with utterly non-military, then the second
paragraph of Article IV is a meaningless redundancy. They point out
that if the Treaty's drafters had intended to apply the "peaceful"
limitation to all of outer space, they would have explicitly done so,
as they did in the second paragraph of that same article in reference
to the moon and other celestial bodies. There, in addition to the
"peaceful purposes" language, the drafters placed specific limitations
on military bases, installations, fortifications, military maneuvers,
and the use of military personnel on the moon and other celestial
bodies. None of these limitations are present in the first paragraph of
Article IV.

Supporters of the partial demilitarization view also make reference to
paragraph 4 of Article II of the United Nations Charter, according to
which member nations must refrain from "the threat or use of force
against the territorial integrity or political independence of any
state." When this is read in conjunction with paragraph 3 of that same
Article, which requires member nations to "settle their international
disputes by peaceful means in such a manner that international peace
and security, and justice, are not endangered," the implication is that
only aggressive military activity is banned. The requirement to employ
"peaceful means" to settle disputes is consistent with the prohibition
on the use of force against "the territorial integrity or political
independence" of other nations. On the other hand, non-aggressive uses
of force, as in self-defense, are harmonious with the mandate for
"peaceful means."

Under similar analysis, in the realm of outer space both "peaceful" and
"non-aggressive military" uses of outer space are allowed. The partial
demilitarization interpretation of the Outer Space Treaty holds that
the clause mandating "exclusively peaceful" use of celestial bodies
mirrors the Treaty's reference in Article III to conduct in accordance
with the U.N. Charter. Because the U.N. Charter itself permits States
to take action in self-defense, the term "peaceful purposes" must also
permit those actions, and only ban aggressive, offensive acts (which
are also forbidden by the U.N. Charter).

This position is further strengthened by the customary international
law of the seas. The drafters of the Outer Space Treaty incorporated
the customary international law of the seas through Article III, which
incorporates all applicable international laws. The law of the seas
recognizes the right of armed vessels to patrol international waters to
promote the U.N. Charter's commitment to maintaining international
peace and security. Clearly, those armed vessels, with their weapons
and military staffs, are intended to and allowed to use force to keep
the peace and conduct defensive operations against military threats.
Thus, under this interpretation, the Outer Space Treaty's application
of such customary international law to outer space and celestial bodies
must create the same right of self-defense against hostile military
forces in outer space and, a fortiori, allow for defense against
inanimate forces of nature such as comets, asteroids, or meteors.

The well-established rule that "peaceful purposes" includes the right
of a State to self-defense was highlighted by then-Senator Al Gore Sr.
in an address to the U.N. General Assembly in 1962:

  It is the view of the U.S. that outer space should be used only for
  peaceful--that is nonaggressive and beneficial--purposes. The
  question of military activities in space cannot be divorced from the
  question of military activities on earth. To banish these activities
  in both environments we must continue our efforts for general and
  complete disarmament with adequate safeguards. Until this is
  achieved, the test of any space activity must not be whether it is
  military or non-military, but whether or not it is consistent with
  the U.N. Charter and other obligations of law.

Supporters of the partial demilitarization theory rely on a fundamental
axiom of international law: "If an act is not specifically prohibited,
then international law permits it." It should be noted that
traditionally, the law of treaty interpretation was based on customary
international law principles. However, in 1980 the Vienna Convention on
the Law of Treaties came into force; it is accepted by many
non-parties, including the United States, as the definitive word on the
rules of treaty interpretation. When the provisions of the Vienna
Convention are applied to the "peaceful purposes" language in the Outer
Space Treaty, they add further support to the partial demilitarization

For example, Article 26 of the Vienna Convention requires States to
perform treaty obligations in good faith, while Article 31 sets forth
the specific rules of treaty interpretation. Treaty terms are to be
interpreted in accordance with their ordinary meaning given the terms
in context, and in light of the treaty's object and purpose. Context
includes the following: any other agreement made by the States
regarding the conclusion of a treaty, and any instrument made by a
party in connection with the conclusion of the treaty accepted by the
other party or parties; any subsequent practice in its application
which establishes the agreement of the parties regarding its
interpretation; and any rule of international law applicable to the
relations between the parties. Also, a "special meaning" (different
from the ordinary) will be given a term if it is established that the
parties so intended. Finally, Article 32 permits reference to
supplemental means of interpretation when, after using the means set
forth in Article 31, the treaty's meaning remains ambiguous, obscure,
or leads to a result which is manifestly absurd or unreasonable. A
treaty's preparatory history and the circumstances of its conclusion
are permissible supplemental means under Article 32.

Looking at the Vienna Convention more closely, Article 31, paragraph 3
provides that in the process of treaty interpretation, "any subsequent
practice in the application of the treaty" shall be considered,
particularly among those States "specially affected." In the area of
space, States "specially affected" essentially means the United States
and the former Soviet Union; the practice of either nation has
substantial legal effect, especially when supported by the common
practice of several other countries with developing space capabilities.
One commentator applied this provision to the Outer Space Treaty as

  Given the ambiguity of the term "peaceful" as used in the [Outer
  Space Treaty], as well as the overt and covert practice of [the
  Soviet Union and the United States] in outer space, the conclusion is
  inescapable that all military uses other than those prohibited by
  treaty were--since the beginning of space exploration and still
  today--lawful as long as they do not violate any of the principles
  and rules of general international law (e.g., uses that represent the
  threat or employment of force).

Moreover, it is a well-established rule of international law that in
order to prevent a particular interpretation of a conventional rule
from becoming controlling, dissatisfied States must signify their
disagreement formally, either through diplomatic channels or through
public statements of authoritative government officials. No State has
ever formally protested the United States' "partial demilitarization"
interpretation of "peaceful purposes" in the context of outer space
activities. In fact, the consistent practice of the United States and
the Soviet Union resulted in the military presence in space of both
nations growing so rapidly that, soon after adoption of the Outer Space
Treaty, outer space achieved the "dubious distinction of being the most
heavily militarized environment accessible to humans (based on the
number of military and civilian payloads launched into orbit)."

Application of these principles of treaty interpretation to Article IV
of the Outer Space Treaty is nonetheless not a panacea for its
ambiguity. A strict interpretation of its "peaceful purposes" language,
giving the terms their ordinary meaning in context, would seem to leave
little doubt that it was intended to apply only to the moon and other
such celestial bodies, and not to outer space. On the other hand, when
the object and purpose of the entire Treaty are considered, issues
arise as to what is "for the benefit and in the interests of all
mankind and all countries," and "in accordance with international law,
including the U.N. Charter." Various commentators have analyzed these
questions, with widely divergent conclusions.  This split of opinion
brings us briefly to the second interpretation of the meaning of
"peaceful purposes."

          Peaceful Purposes -- the Total Demilitarization View

Does any and all military activity in space violate "international law,
including the U.N. Charter"? The term "peaceful" occurs in virtually
all United Nations documents relating to space. However, there is a
general consensus within the United Nations, consistent with the
partial demilitarization view, that "peaceful" means "non-aggressive"
rather than totally non-military. As we have demonstrated above, the
main space powers have tacitly agreed through their actions that all
military activities in outer space are permissible unless specifically
forbidden. Yet this was not always the case.

Originally, the Soviet position was that "peaceful purposes" meant
totally non-military. While officially espousing this total
demilitarization view, the Soviets claimed that their seemingly 
militaristic uses of outer space were all "peaceful" and "scientific."
In contrast, from the beginning of the Space Age the United States
always took the partial demilitarization position that only "aggressive"
purposes were banned and that defensive systems were allowed.

Historically, all nations have generally agreed that activities in
space should be confined to "peaceful purposes," whatever that might
mean. United States policy, as contained in official statements and
legislation since 1958, has been consistent with this view. For
example, in 1958 President Eisenhower declared to Congress, on the
occasion of the founding of the National Aeronautical and Space
Administration (NASA), "the concern of our nation that outer space be
devoted to peaceful and scientific purposes." Similarly, the
Aeronautics and Space Act of 1958 stated that "it is the policy of the
United States that activities in space shall be devoted to peaceful
purposes for the benefit of all mankind." Significantly, and contrary
to the total demilitarization view, this same Act in the same section
also provided for the military departments to conduct space activities
related to "the development of weapon systems, military operations, or
the defense of the United States." This is clear evidence that, at
least as of 1958, the United States never intended "peaceful purposes"
to exclude the use of outer space for some (at least non-aggressive)
military missions.

These military missions have long included surveillance,
communications, navigation, and detection of nuclear explosions. When
the Outer Space Treaty was drafted, according to a former Legal Advisor
in the U.S. Department of State, the "language of Article IV was
carefully chosen to ensure that general principle of 'peaceful uses'
would not interfere with the testing" of weapons such as nuclear
ballistic missiles. In fact, during the drafting of the Treaty, several
delegations attempted to bring about a complete demilitarization of
outer space and questioned the propriety of excluding outer space from
the coverage of the second paragraph of Article IV, but their proposals
were rejected by both the United States and the Soviet Union. This is
powerful evidence against the total demilitarization view.

As one commentator has stated,

  Treaty provisions may simply be a declaration of existing customary
  international law or, if there is not such a declaration, treaty
  provisions may become so with the passage of time through general
  acceptance by other states. The consensus is that the Outer Space
  Treaty, rather than creating new law, merely amounted to a
  codification of existing principles of customary international law
  applicable to outer space, which had already been expressed in U.N.
  General Assembly resolutions and which had already gained acceptance
  internationally. Thus, in the opinion of many scholars, the inclusion
  in the Outer Space Treaty of the concept of "peaceful purposes" was
  merely a restatement of then existing customary international law.

As we have shown, this customary international law as well as the
subsequent practice of the Parties strongly supports the partial
demilitarization view. If this view is indeed accepted, then planetary
defense activities would be allowed under Article IV of the Outer Space
Treaty, because they are defensive and non-aggressive in nature.

However, for purposes of planetary defense, whichever position prevails
(the partial or total demilitarization view) may not finally be
dispositive. If, as part of a planetary defense system, telescopes,
sensors, and even some type of projectiles are established in orbit
around Earth, or installed or tested on the moon or other "celestial
bodies," it can be effectively argued that these are not weapons and
are not military devices, because their sole purpose is to detect and
defend against Earth-threatening natural objects from space. If this
argument is accepted, then the first paragraph of Article IV of the
Outer Space Treaty would clearly permit planetary defense in outer
space, because no weapons would be involved. Likewise, the restrictions
on weapons and military activities in the second paragraph would not
apply, and planetary defense would be permissible on the moon or other
celestial bodies.

                   What is a Weapon?

The asteroids, comets, and meteors that would be targeted by a
planetary defense system are non-living, completely natural objects
with no aspects of human input or control in their genesis or
direction. Such objects are very different from humans and their
manmade or man-directed products (such as buildings, bridges, and
military equipment) that are the targets of weapons and military
devices. Clearly, given the potential disasters a strike of a large
natural space object could spawn, the detection and mitigation of these
horrors is a classic, if not the ultimate example of "peaceful," i.e.,
non-aggressive action "for the benefit and in the interests of all
countries." But can it be established that the planetary defense
components would not, as a threshold matter, even qualify as "weapons"
within the meaning of the Outer Space Treaty?

As shown above, the Vienna Convention provides that "Treaty terms are
to be interpreted in accordance with their ordinary meaning given the
terms in context, and in light of the treaty's object and purpose." The
object and purpose of the Outer Space Treaty are essentially to further
"the common interest of all mankind in the progress of the exploration
and use of outer space for peaceful purposes," and "to contribute to
broad international co-operation in the scientific as well as the legal
aspects of the exploration and use of outer space for peaceful
purposes." There is no indication in the Outer Space Treaty that the
drafters intended "weapon" to have any special meaning. Thus, it is
proper to look at standard dictionary definitions of that term, two
representative sets of which follow.

  1. An instrument of any kind used for fighting. 2. Any organ (of an
  animal or plant) so used. 3. Any means of attack or defense; as, his
  best weapon was silence.

  1. any instrument or device for attack or defense in a fight. 2.
  anything used against an opponent, adversary, or victim: the weapon
  of satire. 3. Zool. any part or organ serving for attack or defense,
  as claws, horns, teeth, stings, etc.

The plain meaning of "weapon" is thus something used for attack or
defense against a living enemy or an instrument thereof. As these
various dictionary  meanings of "weapon" illustrate, one does not
"fight," or engage in "fighting," "attack," or "defense" with a force
of nature except in a metaphorical sense, such as in the term planetary
defense itself. One does not shoot weapons at bad weather, or an
earthquake, or a tidal wave; we may use detection measures or take
shelter or implement precautions, but we do not use weapons in the
ordinary sense of the word. On the contrary, one fights, attacks, or
defends against a living enemy, or something used by a living enemy,
such as a tank or a missile or a battleship.

A weapon is not something used solely against inanimate, natural
entities devoid of intelligent, sentient control or origin. Rather than
a weapon, such a device is more properly termed a tool or an implement,
thereby accurately connoting its intended use against non-living,
natural things, much as a shovel is a tool used to move soil or a
chisel is an implement used to carve stone. A shovel or a chisel could
be used as a weapon, but that is not their ordinarily intended purpose,
and so they are not properly classified as weapons until and unless
they are so used.

In every dictionary definition of weapon, it is a living being or an
instrumentality thereof that is the weapon's target. We use weapons
against people and against animals. We use weapons against human
creations, such as aircraft, ships, tanks, missiles, buildings,
shelters, bridges, roads, dams, factories, and landing strips. Taking
the extreme case, a natural object can even be used as a weapon, as
when the biblical David killed Goliath with a rock he hurled from a
sling, but a rock only becomes a weapon when it is so used by a human
being or perhaps by an intelligent animal. An ordinary rock of whatever
size, whether lying motionless on the ground or shooting through outer
space, is neither a weapon nor a possible target of a weapon unless it
is at some point under intelligent direction, use, or control. Thus, a
planetary defense system, having as its only target entirely
naturalistic forces of nature utterly devoid of human genesis or
control, is not a weapon and is not prohibited by the Outer Space

Yet, as with other non-weapons such as a shovel or a chisel, some of
the components of a planetary defense system, particularly those that
could deflect or destroy an asteroid, would have a peaceful purpose,
but might also be capable of use as aggressive weapons against humans
or human creations. Because of this, it is important to examine the
issue of "purpose" versus "use" in gauging the legality of these
portions of the system.

                          Purpose versus Use

It has been argued that by employing the word "purpose" in Article IV
of the Outer Space Treaty, the drafters meant to convey "the notions of
both intent and of consequences; the activity must not be designed to
terminate in some use of force contrary to international law." Inasmuch
as there is no indication that the drafters wanted the term "purpose"
to have any "special meaning," it should be given its ordinary meaning,
in accordance with the rules of treaty interpretation in the Vienna
Convention mentioned previously.

"Purpose" is defined as "something that one sets before himself as an
object to be attained; an end or aim to be kept in view in any plan,
measure, exertion or operation; design." Indeed, subsequent practice in
the aftermath of the signing of the Outer Space Treaty seems to confirm
that actual "use" was meant to be distinguished from the intended
"purpose" of whatever system is under consideration. For example, in
the SDI program, it is conceivable that portions of that system could
have been used in a hostile or aggressive manner. However, the stated
intended purpose of SDI was always to defend the United States--a
"peaceful purpose" of self-defense. Proponents of SDI used this to
argue that it did not violate the Outer Space Treaty. 

It is reasonable to presume that the drafters of the Outer Space Treaty
knew the difference between "use" and "purpose," and very deliberately
chose the latter, thereby incorporating a "rightful intent" test into
the Treaty. Thus, we must look to the intent of the proponents of a
system to determine whether it meets the "peaceful purpose" test.

In building the case for the legality of a planetary defense system, it
would be important to emphasize its peaceful purpose and world-saving
intent at every opportunity. In press releases, in public
pronouncements, in internal staff meetings and briefings, in technical
manuals, and in documentation of every type, the consistent message
must be that the system has one purpose and one purpose only: planetary
defense against asteroids, comets, meteors, and other natural space
objects. Any indications to the contrary, including the possibility of
a dual purpose, would undermine the legality of the system.

Additionally, where feasible the components of the system should be
made as different as possible from SDI-type or offensive systems
without sacrificing functionality. The system should be designed in
every practicable aspect to reflect its peaceful intent and purpose as
a non-weapon.

Article I of the Outer Space Treaty, although broadly written, is
worthy of note as a general statement of the purpose of the Treaty. The
first paragraph provides:

  The exploration and use of outer space, including the moon and other
  celestial bodies, shall be carried out for the benefit and in the
  interests of all countries, irrespective of their degree of economic
  or scientific development, and shall be the province of all mankind.

To reiterate, it is difficult to conceive of a mission more in tune
with this purpose than planetary defense.

One of the legal arguments against SDI has been that it is not
"peaceful" because it allegedly would not act for the benefit of all
countries, but only for the benefit of the nation possessing it. Even
within the context of SDI this was a highly debatable point. In the
case of planetary defense, this argument is clearly inapplicable,
because the entire planet would directly, indisputably benefit from its
operation in preventing a potential global catastrophe.

In summation, a fair reading of the Outer Space Treaty finds that it
would not prohibit any of the likely components (detection, tracking,
or mitigation) of an operational planetary defense system. Because even

non-aggressive military uses of outer space are legal, a fortiori a
non-weapon, world-saving, peaceful-purpose system such as planetary
defense is legal. As always, there is room for a contrary argument (in
line with the total demilitarization interpretation of "peaceful
purposes," or a nontraditional definition of "weapon" that includes
devices intended solely to defend against inanimate forces of nature),
but the better view is in favor of legality. However, there remains the
question of testing the components prior to deployment and use.


Recall that the second paragraph of Article IV provides, "The
establishment of military bases, installations and fortifications, the
testing of any type of weapons and the conduct of military maneuvers on
celestial bodies shall be forbidden." This clearly prohibits the
testing of "weapons" on the moon or other celestial bodies. It does
not, under the partial demilitarization analysis outlined previously,
ban the testing of weapons in outer space (as opposed to on the moon or
other celestial bodies), and therefore does not ban the testing of
non-weapons such as a planetary defense system in outer space either.
But an effective test of a device sufficiently powerful to divert or
destroy a huge natural space object would likely require a target much
more massive than any manmade entity. It may be necessary to use an
asteroid or meteor or some other "celestial body" as a target for such a

If this is in fact required to ensure a reasonable level of confidence
in the efficacy of a planetary defense system, the argument outlined
above that such a system is not a weapon would bear the burden of
establishing the test's legality. This is the case because Article IV
specifically prohibits the testing of any type of "weapons" on
celestial bodies, irrespective of the peaceful, non-aggressive, purely
defensive purpose of those weapons. Therefore, tests on a celestial
body would only be permissible under this Treaty if the planetary
defense system is not considered a weapon.

Would military participation in such tests render them impermissible?
If planetary defense is a peaceful purpose, as argued herein, the
proponents of the planetary defense system would draw support from the
language in the second paragraph of Article IV that states, "The use of
military personnel for scientific research or for any other peaceful
purposes shall not be prohibited." Thus, the military could participate
in the testing of the system, because the system is not a weapon but
rather an instrument for peaceful purposes.

                        Legal Liability

One final aspect of the Outer Space Treaty deserves mention, addressing
as it does the question of legal liability for launching objects into
space. Article VII provides:

  Each State Party to the Treaty that launches or procures the
  launching of an object into outer space, including the moon and other
  celestial bodies, and each State Party from whose territory or
  facility an object is launched, is internationally liable for damage
  to another State Party to the Treaty or to its natural or juridical
  persons by such object or its component parts on the Earth, in air
  space or in outer space, including the moon and other celestial

Therefore, if the United States launches missiles or other objects into
space in an attempt to deflect or destroy an approaching meteor, comet,
or asteroid, or in testing such a capability, and this causes damage,
the United States would be absolutely liable to pay compensation to the
injured persons. This provision does not employ a negligence standard;
the only issue is causation. Thus it would be no defense that the
launch was well-intentioned or done with all reasonable care. Such
concerns, of course, pale in comparison to issues of global survival,
but they are practical matters to keep in mind nonetheless.

B. The Nuclear Test Ban Treaty.

Another challenge to one aspect of planetary defense, insofar as it may
involve nuclear detonations in space, comes from the Treaty Banning
Nuclear Weapon Tests in the Atmosphere, in Outer Space, and Under
Water. Article I of this Treaty provides as follows:

  1. Each of the Parties to this Treaty undertakes to prohibit, to
  prevent, and not to carry out any nuclear weapon test explosion, or
  any other nuclear explosion, at any place under its jurisdiction or

  (a) in the atmosphere; beyond its limits, including outer space; or
  under water, including territorial waters or high seas; or

  (b) in any other environment if such explosion causes radioactive
  debris to be present outside the territorial limits of the State
  under whose jurisdiction or control such explosion is conducted. It
  is understood in this connection that the provisions of this
  subparagraph are without prejudice to the conclusion of a treaty
  resulting in the permanent banning of all nuclear test explosions,
  including all such explosions underground, the conclusion of which,
  as the Parties have stated in the Preamble to this Treaty, they seek
  to achieve.

  2. Each of the Parties to this Treaty undertakes furthermore to
  refrain from causing, encouraging, or in any way participating in,
  the carrying out of any nuclear weapon test explosion, or any other
  nuclear explosion, anywhere which would take place in any of the
  environments described, or have the effect referred to, in paragraph
  1 of this Article.

The United States is a party to this Treaty and thus is bound to abide
by it. Although the title of the Treaty implies that it only bans
nuclear weapon tests, the above language from Article I broadens this
to "any nuclear weapon test explosion, or any other nuclear explosion"
in what amounts to any place (except underground) and under any
circumstances. On its face, then, the Nuclear Test Ban Treaty appears
to ban all nuclear explosions in space, irrespective of their peaceful
purposes. Unlike the Outer Space Treaty, the Nuclear Test Ban Treaty is
not by its terms limited to "weapons" or to the furtherance of
"peaceful purposes," and thus the argument outlined previously, to the
effect that planetary defense tools are not weapons, would not seem at
first glance to be dispositive.

However, the ordinary meaning of the Treaty's terms may properly be
(and in fact have been) interpreted in context and in light of the
Treaty's object and purpose, under the Vienna Convention. The object
and purpose of the Nuclear Test Ban Treaty are set forth in the
Preamble, which states the "principal aim" of the Parties to be:

  the speediest possible achievement of an agreement on general and
  complete disarmament under strict international control in accordance
  with the objectives of the United Nations which would put an end to
  the armaments race and eliminate the incentive to the production and
  testing of all kinds of weapons, including nuclear weapons,...

The Preamble concludes by stating the intent of the Parties in entering
into this Treaty: 

  Seeking to achieve the discontinuance of all test explosions of
  nuclear weapons for all time, determined to continue negotiations to
  this end, and desiring to put an end to the contamination of man's
  environment by radioactive substances,....

When read in conjunction with this language from the Preamble, the
meaning of the prohibitions in Article I takes on a different slant.
The object and purpose of the Treaty are focused on "disarmament" and
the elimination of production and testing of "all kinds of weapons,
including nuclear weapons." The Parties to the Treaty indicated their
intent "to achieve the discontinuance of all test explosions of nuclear
weapons." These repeated and consistent references to weapons and
disarmament indicate that the drafters intended the Treaty to apply to
weapons, and not to non-weapons such as components of a planetary
defense system.

This interpretation makes sense within the historical context. At the
time the Nuclear Test Ban Treaty went into effect, in 1963, the Cuban
missile crisis was still vividly fresh in the minds of the world's
leaders. There was a great deal of concern about the "missile gap"
between the United States and the Soviet Union, and about the arms race
between the two nuclear superpowers. In the United States, the
citizenry was still worried about Nikita Khrushchev's bold threat, "We
will bury you!" The focus everywhere was on the very real possibility
of World War III beginning at any time, complete with use of nuclear

In 1963, any potential peaceful use of nuclear explosions was totally
overshadowed by this specter of nuclear war. The Preamble of the

Nuclear Test Ban Treaty underscores the fears then in the minds of the
drafters, and indeed of people everywhere.. These fears of nuclear war
explain the multiple references therein to nuclear "weapons" and the
need for "disarmament."

Why, then, does the actual text of Article I refer not only to nuclear
weapon test explosions but also to "any other nuclear explosion"? The
clear intent of the drafters, as set forth in the Preamble, was to ban
nuclear weapon tests. In this light, the reference to "any other
nuclear explosion" was meant to cover the precursors to nuclear
weapons, or their component parts, which, although not constituting an
actual nuclear weapon, would be only a short step removed from that
stage. This interpretation is consistent with the Treaty's focus on
weapons and armaments. The broad, all-inclusive language in Article I
was an effort to circumvent any end-runs around a ban on nuclear
weapons; but for this expansive language, some States may have tried to
play games with the Treaty by detonating only precursors to or
sub-components of nuclear weapons. Literally speaking, such devices
might not have constituted nuclear weapons, but they certainly would
have offended the Treaty's purpose of disarmament and elimination of
nuclear weapon tests. Therefore, the drafters wrote the text of Article
I to preclude such explosions as well as those of mature "weapons."

In fact, it was this fear that led to the insertion of the words "or
any other nuclear explosion." An earlier draft of the Treaty, proposed
by the United States and the United Kingdom, contained a special
provision on "explosions for peaceful purposes" which would have
explicitly authorized otherwise prohibited explosions of nuclear
devices for peaceful purposes, under some circumstances. The Soviet
Union objected to this provision, and as a result it was deleted. In
its stead, the "or any other nuclear explosion" language was inserted.

The Soviets insisted on this point because of their concerns regarding
the United States' "Plowshare" program. That program was intended to
use nuclear explosions for peaceful projects such as excavation,
mining, recovery of oil and gas, development of water resources,
digging canals and harbors, and creating passes through mountains.
According to the State Department Legal Advisor, the Soviets were
worried about the difficulty of distinguishing peaceful purpose
explosions from weapons tests... [I]f Article I had remained confined
to "nuclear weapon test explosions"...a party might have conducted
explosions revealing valuable military data or even weapon tests on the
pretense that they were in fact peaceful purposes explosions and not
"nuclear weapon test explosions." In order to close this loophole, the
phrase "any other nuclear explosion" was inserted in Article I at the
appropriate points. Its purpose is to prevent, in the specified
environments, peacetime nuclear explosions that are not weapons tests.
That is its only significance.

The Treaty's narrow focus on restricting the testing of new nuclear
weapons is underscored by a key gap in its coverage. Despite the
apparently plain language of the text, the consensus of the Parties and
other nuclear powers is that the Treaty does not prohibit use of
nuclear weapons in wartime. Although the expansive language "or any
other nuclear explosion" would on its face unambiguously ban nuclear
explosions during war, even in self-defense or in a retaliatory strike,
this has never been accepted as the meaning or legal effect of the
Nuclear Test Ban Treaty. As noted by one commentator, "If it had been
intended to prohibit the use of nuclear weapons in wartime, some
mention of that important purpose would certainly be found in the title
and in the Preamble." Instead, as previously discussed, the title and
the Preamble focus only on nuclear weapon tests.

Significantly for our purposes, then-Secretary of State Dean Rusk told
the Senate that the Treaty does not affect the United States' ability
to defend itself. He said that Article I, section 1, "does not prohibit
the use of nuclear weapons in the event of war nor restrict the
exercise of the right of self-defense recognized in Article 51 of the
Charter of the United Nations."

Moreover, in the years following the signing of the Treaty, even the
Soviet Union moved away from its opposition to peaceful nuclear
explosions. This shift was summarized by one Soviet scholar as follows:

  The possibilities of using nuclear explosions for civil
  purposes have been studied mainly in the United States and the Soviet
  Union. Both countries have been examining the feasibility of using
  nuclear explosions for exploiting oil and gas deposits, for opening
  up ore fields, for building water reservoirs in arid regions, for
  earth-moving operations in canal construction, and so on. In the
  United States the Plowshare Program was established to implement a
  number of such projects; the Soviet counterpart is "The Programme of
  use of commercial underground nuclear explosions." Such studies have
  so far been largely theoretical, and although much useful data has
  been obtained from test explosions, none of the projects under
  investigation has yet reached the stage of wide and practical
  application.... It is concluded that, at present, peaceful nuclear
  explosions are advisable only for exceptionally urgent problems which
  cannot otherwise be solved.

It is clear, then, that the object and purpose of the Treaty, as well
as the subsequent practice of its signatories, have modified the
meaning of the text. The intent of the drafters was to place limits on
the testing of nuclear weapons, and the drafters took care to guard
against weapons testing under the subterfuge of a peaceful purpose. But
the Soviet Union eventually came to share the United States' position
that certain legitimately peaceful purposes of nuclear explosions may
indeed be desirable, given appropriate safeguards. And both superpowers
understood from the beginning that, despite the text's seemingly
sweeping prohibition on nuclear explosions in the atmosphere, in outer
space, and underwater, the use of nuclear explosions in wartime was not

Viewed within this context, nuclear explosions in space caused by a
planetary defense system would be permissible under the Nuclear Test
Ban Treaty. As argued previously, a planetary defense device is not a
weapon but rather an implement to protect against inanimate forces of
nature. Furthermore, consistent with the above quotations representing
both the United States and Soviet viewpoints, planetary defense devices
would be used in "self-defense," and "only for exceptionally urgent
problems which cannot otherwise be solved." Therefore the better
position, considering all relevant circumstances, is that neither the
testing nor the actual use of a planetary defense nuclear device in
space would be precluded by this Treaty.

In any event, because the Nuclear Test Ban Treaty is limited to nuclear
explosions, it only applies to the aspects (if any) of a planetary
defense system that would entail nuclear explosions. Thus, the Treaty
would not govern any radars, sensors, or telescopes used to detect and
monitor objects in space. In the category of mitigation, any tool that
does not involve nuclear explosions would be clearly permissible.
Lasers or kinetic energy implements would be allowed under the Treaty,
because they fall outside the threshold definition of the type of items
the Treaty covers.

Let us return to the possible use of nuclear explosion devices to
deflect or destroy threatening objects from space. Even if the view is
not accepted that the Treaty only applies to nuclear weapons and their
precursors or components (and thus does not proscribe planetary defense
detonations), there are still two escape hatches. One is for the United
States to withdraw from the Treaty.

The Nuclear Test Ban Treaty provides for any party to withdraw from the
Treaty if it determines that "extraordinary events" related to the
subject matter of the Treaty have jeopardized that party's supreme
interests. Such withdrawal is to be preceded by three months notice.

In many if not all cases in which Earth is threatened by a major
collision, there should be sufficient warning to permit the United
States to serve the requisite notice of withdrawal from the Treaty.
Certainly the type of gigantic meteor or asteroid strike envisioned
would constitute an "extraordinary event" that jeopardizes not only the
United States' "supreme interests," i.e., survival, but those of every
other nation on Earth as well. Assuming the evidence of the impending
Earth strike were clear and unequivocal, it is unlikely that any
notification of intent to withdraw from this Treaty would meet with
much international opposition. Indeed, it may be that other nations
would actively attempt to persuade the United States to take action to
prevent the threatened cataclysm.

The other escape hatch is the option to amend the Treaty to allow for
the limited exception of planetary defense nuclear detonations in
space, including tests. Article II provides:

  1. Any Party may propose amendments to this Treaty. The text of any
  proposed amendment shall be submitted to the Depositary Governments
  which shall circulate it to all Parties to this Treaty. Thereafter,
  if requested to do so by one-third or more of the Parties, the
  Depositary Governments shall convene a conference, to which they
  shall invite all the Parties, to consider such amendment.

  2. Any amendment to this Treaty must be approved by a majority of the
  votes of all the Parties to this Treaty, including the votes of all
  of the Original Parties. The amendment shall enter into force for all
  Parties upon the deposit of instruments of ratification by a majority
  of all the Parties, including the instruments of ratification of all
  of the Original Parties.

This amendment process could be pursued now, during the planning and
early developmental phases of a planetary defense system. As argued
herein, such amendment would not be necessary, but it would serve to
make absolutely clear that planetary defense nuclear explosions are
allowed, as well as focus public attention on the need for a planetary
defense system. Appropriate safeguards, prerequisite criteria, and
consultation requirements could be included, to allay fears that these
planetary defense devices might be a Trojan horse for surreptitiously
conducting nuclear weapon tests and deployments.

C. The Anti-Ballistic Missile Treaty.

The United States and the Soviet Union entered into the Treaty on the
Limitation of Anti-Ballistic Missile (ABM) Systems in 1972. The
Parties' intent is set forth in the Preamble: "[E]ffective measures to
limit anti-ballistic missile systems would be a substantial factor in
curbing the race in strategic offensive arms and would lead to a
decrease in the risk of outbreak of war involving nuclear weapons...."
The Treaty is meant to prohibit the research, development, testing, and
deployment of ABM systems other than the very limited exceptions
specifically provided for in Article III of the Treaty; Article III
prohibits deployment of all other ABM systems. Finally, Article V
indicates the Parties' intention "not to develop, test, or deploy ABM
systems or components which are sea-based, air-based, space-based, or
mobile land-based."

The key to determining the applicability of this Treaty to portions of
a planetary defense system lies in the definition of the term "ABM
system." This is defined in Article II:

  1. For the purpose of this Treaty an ABM system is a system to
  counter strategic ballistic missiles or their elements in flight
  trajectory, currently consisting of:

  (a) ABM interceptor missiles, which are interceptor missiles
  constructed and deployed for an ABM role, or of a type tested in an
  ABM mode;

  (b) ABM launchers, which are launchers constructed and deployed for
  launching ABM interceptor missiles; and

  (c) ABM radars, which are radars constructed and deployed for an ABM
  role, or of a type tested in an ABM mode.

  2. The ABM system components listed in paragraph 1 of this Article
  include those which are:

  (a) operational;

  (b) under construction;

  (c) undergoing testing;

  (d) undergoing overhaul, repair or conversion; or

  (e) mothballed.

The controversy over applicability of the ABM Treaty to SDI centered
for the most part on the meaning of the comma preceding the phrase
"currently consisting of."

The Reagan Administration argued that the comma had the effect of
limiting the definition of an ABM system to the components then in
existence. Under this view, an ABM system had to both meet the elements
of the basic definition to the left of the comma and fit within the
definition of one of the examples to the right. The Soviets disagreed,
arguing that the comma merely separated the basic definition from an
illustrative but not limiting list of examples that happened to exist
at the time the Treaty was signed. This dispute was never fully
resolved, but it consumed years in the process. The ABM Treaty was thus
a major obstacle to certain important aspects of SDI.

On the most basic level, the Article III prohibitions in the ABM Treaty
should not apply to any portions of a planetary defense system,
because, unlike SDI, a planetary defense system is not "a system to
counter strategic ballistic missiles or their elements in flight
trajectory." Rather, it is a system to counter meteors, comets, and
asteroids in flight trajectory. Because this threshold definitional
issue takes a planetary defense system outside the reach of the Article
III, there should in theory be no need for further analysis insofar as
that Article is concerned. However, some may argue that much of the
same technology and equipment could be used for either planetary
defense or for ABM defense, based on the superficial similarities
between the act of detecting, tracking, and destroying incoming
ballistic missiles and doing the same for asteroids, comets, or

Similar to the analysis of "peaceful purpose" under the Outer Space
Treaty, the issue of "rightful intent" should be of assistance on this
point. The definitional language of Article II of the ABM Treaty
clearly implies that intent is important, in that it defines ABM
interceptor missiles, launchers, and radars as those "constructed and
deployed for an ABM role." Therefore, if any of these components were
constructed and deployed for a role other than ABM, e.g., for a
planetary defense role, the Article III prohibition in the ABM Treaty
would be inapplicable to them. In this regard, the stated role of a
planetary defense system would not be to counter strategic ballistic
missiles or their elements in flight trajectory, but rather to divert
or destroy asteroids, meteors, or comets threatening the Earth from
space. To be persuasive, this stated role must be buttressed with
consistent evidence in every feasible aspect of the system's design,
and by all documents and statements concerning the system's purpose and
function. This evidence could then be taken to the Geneva-based
Standing Consultative Commission for possible resolution, if need be.

It is impossible to stress this point too strongly. Every discussion of
the planetary defense system, in every forum, must clearly and
unambiguously emphasize the sole purpose for the system. Because of the
superficial parallels between the SDI and planetary defense
technologies, it is absolutely essential to draw distinctions between
the two at every opportunity. Any blurring of the lines that separate
these missions could threaten to bring planetary defense within the
prohibitions of the ABM Treaty. If that happens, this mission might
face the same political controversies, legal battles, and protracted
delays that so persistently plagued SDI.

One other portion of the ABM Treaty deserves analysis. Article VI states:

  To enhance assurance of the effectiveness of the limitations on ABM
  systems and their components provided by the Treaty, each Party

  (a) not to give missiles, launchers, or radars, other than ABM
  interceptor missiles, ABM launchers, or ABM radars, capabilities to
  counter strategic ballistic missiles or their elements in flight
  trajectory, and not to test them in an ABM mode; and

  (b) not to deploy in the future radars for early warning of strategic
  ballistic missile attack except at locations along the periphery of
  its national territory and oriented outward.

Unlike the Article III prohibitions, Article VI does not depend on the
intended purpose of the missiles, launchers, or radars. Rather, it
focuses on the capability of such systems to "counter strategic
ballistic missiles or their elements in flight." Other than the very
limited exceptions provided for in Article III, the Parties are bound
not to give this capability to "missiles, launchers, or radars." It
deals with capability, not with intended use. How, then, does Article
VI mesh with the probable components of a planetary defense system?

The key question is whether planetary defense "missiles, launchers, or
radars" would have the capability to "counter strategic ballistic
missiles or their elements in flight." At this stage, it is impossible
to answer this question definitively, because it deals with the very
practical, real-world capabilities of systems--characteristics of
systems that can only be addressed on a case by case basis. Because we
do not now know exactly what devices might comprise a planetary defense
system, we lack the data to make this determination conclusively.
However, we can explore the probable capabilities of a workable
planetary defense system and compare these with the capabilities
required of an effective ABM system.

As a threshold matter, the targets of the two systems are very
different. To be a worthwhile target for a planetary defense system, an
approaching asteroid, comet, or meteor would have to be much more
massive than even the largest ICBMs. The more significant space objects
would often be on the order of a kilometer in diameter, or even larger,
while ICBMs are at most only a few meters across. As potential targets,
such a space object could be likened to the proverbial "broad side of a
barn," while the comparatively tiny ICBM would be a "needle in a
haystack." Certainly, far less precision would be required of the
planetary defense system than of the ABM.

The origin of the targets presents another enormous difference. 
Threatening space objects would begin a course of intercept with the
Earth from literally millions of miles away. In contrast, ICBMs
originate on Earth itself, and possess a trajectory that barely even
enters outer space. The ICBMs' flight path is infinitesimal compared to
that of space objects. This means that a planetary defense system has
the luxury of much more time--perhaps several months--to detect, track,
characterize, and destroy its target. An ABM system, on the other hand,
must be able to perform all of these functions within a time span of
only a few minutes, particularly in the case of missiles launched from
submarines near the coast of the target nation. Again, a planetary
defense system would face far less daunting technological challenges
than would an ABM system.

Therefore, both on the basis of the relative size of the targets and
the available response time, it is highly unlikely that a planetary
defense system would have the capability to counter strategic ballistic
missiles or their elements in flight trajectory. An ABM system would
require much more rigorous technology in both respects. For reasons of
economy alone it is reasonable to presume that a planetary defense
system would be designed, tested, and built to meet the challenges,
formidable in their own right, presented by its intended targets, and
not targets that are much smaller and with much shorter reaction time.
Thus, such a planetary defense system would not violate Article VI of
the ABM Treaty.

For much the same reasons, it is improbable that the components of a
planetary defense system would be tested "in an ABM mode." Even the
most envelope-stretching tests of a planetary defense system would not
require a target remotely resembling an ICBM. Again, the vast
differences in target size and response time would call for very
different testing from that required for an ABM system. Therefore, the
Article VI prohibition on testing of systems in an ABM mode would not
be violated by planetary defense testing.

In the immediate aftermath of the dissolution of the Soviet Union, the
continuing viability of the ABM Treaty may have been thought in doubt
by virtue of the fact that one of its two signatories, the Soviet
Union, no longer exists. However, the Vienna Convention on Succession
of States in Respect of Treaties would operate to transplant the new
Commonwealth of Independent States into the position previously
occupied by the Soviet Union. As a result, the ABM Treaty is still in

As discussed herein, the Treaty does not prohibit a planetary defense
system, whether under Article III or Article VI. But even if, contrary
to this analysis, it is deemed to apply to a system dedicated solely to
planetary defense, there are the escape hatches of amendment or

Article XIV of the ABM Treaty allows for amendment, which obviously
would require the agreement of both the United States and the
Commonwealth of Independent States. As stated by Paul H. Nitze, special
advisor to President Reagan on arms control, the drafters of the ABM
Treaty "envisaged a living accord--that is, one that would make
allowance for and adapt to future circumstances.."

Article XV permits withdrawal from the Treaty upon six months' notice
if a party decides in good faith that "extraordinary events related to
the subject matter of this Treaty have jeopardized its supreme
interests." As discussed previously, a large-scale impact from space
would definitely qualify; the only question would be whether we would
know about the projected impact early enough to make the six-month
advance notification of withdrawal.

As a practical matter, the options of amendment or withdrawal could
face formidable political obstacles. Because these escape hatches would
involve issues of vital importance to both the United States and the
Commonwealth of Independent States, the process can be expected to be
difficult and emotionally charged. Absent a very clear, large scale
threat to Earth, the same concerns that strained relations between the
United States and the Soviet Union over SDI would probably flare up
again. And even within the United States, there could be a great deal
of disagreement between the President and Congress over the most
appropriate course of action.

There has been some recent Congressional activity concerning the ABM
Treaty that illustrates this point, albeit not in the area of planetary
defense. A bill was introduced in the House of Representatives entitled
The Defend America Act of 1995, which would require the President
within 180 days after enactment to serve notice that the United States
intends to withdraw from the ABM Treaty. This legislation is directed
toward remedying the lack of defense against ballistic missile attack.
Similarly, a section was inserted into the National Defense
Authorization Act for Fiscal Year 1996, entitled The Ballistic Missile
Defense Act of 1995. This again deals with the threat to the United
States from ballistic missiles, and it "urges" the President to pursue
high-level discussions with the Russian Federation to amend the ABM
Treaty. These proposed amendments would allow deployment of multiple
ground-based ABM sites to provide effective defense of the United
States against limited ballistic missile attack; unrestricted use of
sensors based within the atmosphere and in space; and increased
flexibility for development, testing, and deployment of follow-on
national missile defense systems.. While these legislative initiatives
have not become law as of this writing, they are indicative of some
sentiment within Congress to amend or withdraw from the ABM Treaty for
reasons independent of planetary defense.

The Supreme Court has not resolved the issue of the President's right
to withdraw from, terminate, or suspend a treaty without the
involvement of the Senate. The President, acting alone, can probably
take such actions, absent express provisions to the contrary in a given
treaty or a legislative condition. However, this type of unilateral
action by the President is best reserved for true emergencies because
of the immense international political implications. In any event, if
the legislative proposals discussed herein are reflective of the views
of a majority of Congress, such unilateral Presidential action may be

D. The Moon Agreement.

The 1979 Agreement Governing the Activities of States on the Moon and
Other Celestial Bodies (the Moon Agreement) repeats, in Article III,
much of the Outer Space Treaty's Article IV. Article III prohibits the
threat or use of force or any other hostile act on the moon, and the
use of the moon to commit such an act in relation to the Earth or to
manufactured space objects. Depending on the exact means and methods
employed in a planetary defense system, the Moon Agreement may have
some relevance.

To some extent the Moon Agreement supplements the Outer Space Treaty,
enlarging on some provisions concerning military activities on the moon
and other celestial bodies. Article III provides:

  1. The moon shall be used by all States Parties exclusively for
  peaceful purposes.

  2. Any threat or use of force or any other hostile act or threat of
  hostile act on the moon is prohibited. It is likewise prohibited to
  use the moon in order to commit any such act or to engage in any such
  threat in relation to the earth, the moon, spacecraft, the personnel
  on spacecraft or man-made space objects.

  3. States Parties shall not place in orbit around or other trajectory
  to or around the moon objects carrying nuclear weapons or any other
  kinds of weapons of mass destruction or place or use such weapons on
  or in the moon.

  4. The establishment of military bases, installations and
  fortifications, the testing of any type of weapons and the conduct of
  military manoeuvers on the moon shall be forbidden. The use of
  military personnel for scientific research or for any other peaceful 
  purposes shall not be prohibited. The use of any equipment or
  facility necessary for peaceful exploration and use of the moon shall
  also not be prohibited.

The United States' position on Article III is that it permits military
activities that are not aggressive, i.e., those undertaken for
"peaceful purposes." Once again, the reference to peaceful purposes in
this Article does not add any clarification to the contradictory
interpretations given to the term "peaceful purposes" in the Outer
Space Treaty.

The Moon Agreement adds little, if anything, to the provisions of the
Outer Space Treaty in the realm of military space activities. Moreover,
the fact that ten years after its adoption it had only been ratified by
a handful of nations, and never by any space-launching power, makes it
largely a non-factor for our purposes. Even if a planetary defense
system happens to involve the moon to one extent or another, the
provisions of the Moon Agreement should add no significant problems to
those already in issue pursuant to the treaties discussed previously.
The same arguments in support of the planetary defense system should

V. Conclusion.

Planetary defense is a very new issue in every respect, including the
attendant legal issues. Until very recently, the notion that mere
mortals might foretell and prevent "acts of God" such as a massive
asteroid strike was pure science fiction. But myriad modern
advancements in scientific and technological disciplines have brought
the mission of planetary defense within the realm of human capability.
Given that we can defend the Earth, the question of whether we may has
now arisen for the first time.

For any non-lawyer blessed with even a modicum of common sense, it
might seem ludicrous even to suggest that it could be illegal to defend
the Earth from space-borne destruction. The prospect of averting
potential global annihilation is so manifestly good and noble that
there would seem to be no question that we should do all we can to
develop, maintain, and if necessary use every means available in its
support. As lawyers (with or without common sense) know, however, the
law sometimes does operate counter-intuitively, and sometimes causes
unjust results in a given case.

Fortunately, in the case of planetary defense, the law is on the side
of common sense. As has been demonstrated herein, all likely components
of a planetary defense system, whether in the surveillance or the
mitigation phase, can be supported under existing international and
space law. Some tools are more clearly within the bounds of legality
than others, but in every instance a strong argument can be made in
support of legality.

It is vitally important that any questions as to the legality of
planetary defense be resolved now. The defense-in-depth required to
provide acceptable levels of protection from catastrophic strikes from
space will take years to design, test, and build. This is not something
that can be created ex nihilo in a few weeks or months when a threat is
actually discovered. It will be simultaneously one of the most
challenging, and most potentially beneficial, enterprises ever
undertaken by humankind.

This article has shown that there are no insurmountable legal obstacles
to defending planet Earth. The way is therefore clear for us to pursue
the methods of doing so. This is very good news for every living thing
on this planet, because someday, all life on Earth may owe its
continued existence to an operational, and legal, planetary defense

     == End of article ==


CCNet DIGEST 6 August 1998

    Ron Baalke <>

    James Bedient <>

    James Bedient <>

    Ron Baalke <>

    D.E. Patton, US EPA

    B.L. Murphy, IT CORP



From Ron Baalke <>


Contact:  Diane Ainsworth

FOR IMMEDIATE RELEASE                         August 5, 1998


A NASA-sponsored asteroid tracking system has found two new large
objects that cross Earth's orbital path, but show no signs of coming
dangerously close to Earth within at least the next several decades,
astronomers say.

The asteroids were found in observations made with the Near-Earth
Asteroid Tracking (NEAT) system, managed by NASA's Jet Propulsion
Laboratory, Pasadena, CA. 

"These discoveries come on the heels of last month's installation of
new state-of-the-art computing and data analysis hardware that speeds
our search for near-Earth objects," said NEAT Project Manager Dr.
Steven Pravdo of JPL. "This shows that our efforts to find near-Earth
objects are paying off."

The newly discovered asteroids 1998 OH and 1998 OR2 are both large
enough to cause global effects if one impacted Earth, and both are
classified as "potentially hazardous objects" because they pass
periodically near Earth's orbit (like at least 125 other objects
discovered so far).  Both asteroids are 1 to 3 kilometers (about 1
mile) in diameter.

Crucial follow-up observations of both asteroids made by
co-investigator Dr. David L. Rabinowitz of JPL were used to calculate
projected orbits that show that neither of the objects pose an
immediate threat to Earth.  Rabinowitz made the observations with  the
61-centimeter (24-inch) telescope at the JPL's Table Mountain Facility
in Wrightwood, CA, which is used to make immediate follow-up
observations of recently discovered near-Earth objects in an effort to
better determine their orbits and to compositions and rotational state.

"Our goal is to discover and track all the potentially dangerous
asteroids and comets long before they are likely to approach Earth,"
said NEAT Principal Investigator  Eleanor Helin. "The discovery of
these two asteroids illustrates how NEAT is doing precisely what it is
supposed to do."

Additional follow-up observations are required to more precisely
determine the orbits of these asteroids, but preliminary projections
show that 1998 OH can get no closer than about 5 million kilometers
(about 3 million miles) -- about 20 times the distance between Earth
and the Moon.

NEAT uses a large, sensitive and fully automated charge-coupled device
(CCD) camera mounted on a 1-meter-diameter (39-inch) telescope operated
by the U.S. Air Force at the 3,000-meter (9,000-foot) summit of
Haleakela on the island of Maui in Hawaii. "Our upgraded equipment has
speeded up the data processing allowing us to analyze up to 40
gigabytes of data each night, equivalent to 1,200 images of the sky,"
said Pravdo.   

Images and other information about the new asteroids and the NEAT
project can be found on the Internet at .



From James Bedient <>
AMS Electronic Information Coordinator

Two very interesting fireball reports have come across my desk in the
last few days. 

I received the first report from an observer in St. Charles, Missouri
(38 deg 48 min N, 90 deg 35 min W).  He described a bright daylight
fireball with a sonic boom.

The event occurred on August 1, 1998, at 22:48 UTC (17:48 Central
Daylight Time). The object appeared nearly overhead, at alt=80 deg,
az=180. The observer followed its flight for over 45 degrees until it
disappeared behind trees at alt=45 deg, az=70 deg.  The object was
described as blue-white in color and fragmenting during the 1-2 seconds
the observer had it in sight. The object had an orange train about 5
degrees in length.

The observer heard a boom about 4 minutes after the object was seen.

The latter object(s), seen from the vicinity of Yellow Pine, Idaho (44
deg 57 min N, 115 deg 29 min W) appeared at 05:36 UTC, August 3, 1998
(August 2, 23:36 Mountain Daylight Time).  The object(s) appeared at
alt=70 deg, az=45 deg, and disappeared at alt=60 deg, az=315 deg.  In
the observer's words, "I saw two (2) balls of fire almost immediately
alongside each other with one leading the other by a fraction.  They
were intensely white and were approximately one and one-half to two
times the diameter of the [75% illuminated] moon I had been observing
to the south." Based on a plot of this event, this fireball may be an
early example of an Upsilon Pegasid. 

Further reports of these objects are solicited. E-mail reports to me at, or fill out the AMS on-line fireball report form at:


From James Bedient <>
AMS Electronic Information Coordinator

The American Meteor Society (AMS) is sponsoring a meteor spectroscopy
project based in Courtenay, British Columbia. The purpose of this
project is to obtain high dispersion spectra of bright fireballs.  Such
spectra are of interest to the professional meteor scientist in order
to obtain information on elemental content and high velocity impact
radiation studies.

The project head, Mr. Edward Majden (e-mail:,
has successfully obtained a number of bright meteor spectra in the
past. He has been conducting an amateur meteor spectroscopy program
since 1972. His early spectra were sent to Dr. Peter M. Millman at NRCC
for study. More recent spectra have gone to Dr. Jiri Borovicka at
Ondrejov Observatory in the Czech Republic.  A joint paper with Dr.
Borovicka on a 1986 Perseid spectrum has just been accepted by the
JRASC for publication.

Mr. Majden will continue to use his current two spectrographs: a prism
spectrograph and one precision replica grating unit, both of which use
4x5 inch panchromatic cut film to record the spectrum.  Pending the
result of light-pollution tests needed due to a subdivision being
constructed near Mr. Majden's observatory, AMS financial and equipment
support will be used to construct two larger spectrographs.  These will
feature large aperture aero lenses such as the F/2.5 - 12 inch fl Ektar
or F/6 - 24 inch fl Aero Ektar with full aperture holographic gratings.
The film format will be 8 X 10 inch panchromatic cut film.

Mr. Majden will also prepare a small manual on meteor spectroscopy that
the AMS will publish or distribute to interested amateurs.  This will
of course take some time, but meanwhile Ed is glad to offer advice to
anyone serious about getting into meteor spectroscopy.  "There are far
too few people engaged in this field of study", Ed says, "So I think
that amateurs can make a contribution to meteor science by getting
involved in this work."

Few individuals are engaged in active meteor patrol spectroscopy.
According to Mr. Majden, this is not because of lack of interest, but
is a result of government funding cutbacks in the pure research fields.
"The pioneer Canadian programs at NRCC have been shut down.  This
includes the Meanook-Newbrook Meteor Observatories, Spring Hill Meteor
Observatory and the MORP network. The only professional group that is
still active is the one at Ondrejov Observatory in the Czech Republic. 
The Dutch Meteor Society also does spectroscopy, but there is a real
void in North America." To help fill this void, the AMS is supporting 
Mr. Majden's work.

Mr. Majden's mailing address is:

1491 Burgess Road                    
Courtenay, B.C.                      
CANADA  V9N-5R8                      


From Ron Baalke <>

At the 61st Meteoritical Society Meeting held in Dublin, Ireland last
week, an announcement was made by Jutta Zipfel that a new Mars
meteorite was recovered from the Sahara Desert. If confirmed, this
would bring the total number of Mars meteorites to 13. The last
recovery of a Mars meteorite was QUE 94201 from the Antarctic in 1994,
and the last recovery of a Mars meteorite outside of the Antarctic was
from Zagami, Nigeria in 1962. The new Mars meteorite weighs about 2kg
and is owned by a private collector, who was not identified.
The Sahara meteorite has been tentatively classified as a shergotite, the
most common type of Mars meteorite. Detailed analysis is currently
underway by European scientists. Current news and updates on the
meteorite will be maintained on my Mars Meteorite home page:

Ron Baalke


D.E. Patton: Environmental risk assessment: Tasks and obligations.
HUMAN AND ECOLOGICAL RISK ASSESSMENT, 1998, Vol.4, No.3 Pt1, pp.657-670


Synthesizing, characterizing, and communicating the risk science
information used in environmental decision-making depends in the first
instance on the nature and quality of the technical analysis. At the
same time, other important features of the risk analysis, features that
require special attention to provide context for the analysis as a
whole, are frequently overlooked in practice or in presentation. Now,
as the field expands to meet new challenges and to include new
participants, all practitioners - government, academics, industry, and
interest groups - must give renewed emphasis to certain hallmarks of
sound risk assessment: identifying incomplete information and its
influence on the risk assessment process, articulating alternative
assumptions and the scientific or policy reasons for choices made among
alternatives, describing process considerations and limitations as well
as numerical results, and fully informing decision-makers, the press,
and the interested public. The resulting greater clarity and
transparency in the scientific analyses that underlie environmental
decision-making can enhance credibility and public confidence in the
scientific foundation for those decisions. Copyright 1998, Institute
for Scientific Information Inc.


B.L. Murphy: Dealing with uncertainty in risk assessment. HUMAN AND
ECOLOGICAL RISK ASSESSMENT, 1998, Vol.4, No.3 Pt1, pp.685-699


This paper is a commentary on Hattis' three laws of risk assessment.
The first law, that ''application of standard statistical techniques to
a single data set will nearly always reveal only a trivial proportion
of the overall uncertainty in the parameter value'' is illustrated both
by examining the relevance of animal models to man and by a
retrospective view of exposure conditions whose importance has only
recently been recognized to be important. The second law, that ''any
estimate of the uncertainty of a parameter value will always itself be
more uncertain than the estimate of the parameter value,'' is examined
in terms of a model addressing multiple levels of uncertainty, e.g.,
the ''uncertainty in the uncertainty''. A argument is made that the
number of terms needed for convergence of this uncertainty hierarchy
depends on how far from the central tendency of the risk distribution
one goes. The further out the ''tail'' of the distribution, the more
terms in the uncertainty hierarchy are needed for convergence. The
third law, that ''nearly all parameter distributions look lognormal, as
long as you don't look too closely,'' is illustrated with a number of
examples. Several reasons are put forward as to why risk variables
appear so frequently to be lognormal. Recognition of the lognormal
character of variable distributions can provide insight into the proper
form for the associated uncertainty distributions. Copyright 1998,
Institute for Scientific Information Inc.



Attempts to prevent US schools and libraries from falling foul of new
Internet copyright laws have won support in Congress. The House of
Representatives has approved a "fair use" amendment for the
non-commercial use of copyrighted works.

Earlier versions of the legislation would have outlawed any
circumvention of security measures put in place by publishers to
protect their works in electronic form. Schools and libraries had
feared that this would stop them copying works for educational

They said the safeguards could be used to create pay-per-use works that
could no longer be lent free to students and library users.

The House amendment which is designed prevent this from happening has
the support of Hollywood studios, music and book publishers and the
software industry.

The Senate, which has passed its own version of the Internet copyright
legislation, will have to review the House changes when it returns from
its summer recess in September.

The Business Software Alliance applauded the House action, saying it
would help electronic commerce continue to grow by assuring software
developers and other inventors that their work would be protected on
the Internet.

Copyright 1998, BBC

The CCNet is a scholarly electronic network. To subscribe, please
contact the moderator Benny J Peiser at <>.
Information circulated on this network is for scholarly and educational
use only. The attached information may not be copied or reproduced for
any other purposes without prior permission of the copyright holders.
The electronic archive of the CCNet can be found at

CCCMENU CCC for 1998